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Class of exact solutions of the Skyrme and the Faddeev models

Minoru Hirayama* and Jun Yamashita†
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A class of exact solutions of the Skyrme and the Faddeev models is presented. In contrast with previously
found solutions, they are produced by the interplay of the two terms in the Lagrangians of the models. They are
not solitonic but are of wave character. With an appropriate choice of field variables, the field equations of the
two models are written in exactly the same form. The solutions supply us with examples of the superposition
of two plane waves in nonlinear field theories.
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I. INTRODUCTION

The Skyrme model@1# is defined by the Lagrangian den
sity

LS524c2 tr@~g†]mg!~g†]mg!#

1
c4

2
tr~@g†]mg, g†]ng#@g†]mg, g†]ng# ! ~1!

whereg(x) is an element ofSU(2) andc2 andc4 are cou-
pling constants. If we defineAm

a(x) andHmn
a (x) by

Am
a5

1

2i
tr~tag†]mg! ~2!

Hmn
a 5]mAn

a2]nAm
a , ~3!

LS can be written as

LS58c2Am
aAa,m2c4Hmn

a Ha,mn, ~4!

whereta (a51,2,3) are the Pauli matrices. The field equ
tion is given by@1#

]m~2c2Aa,m1c4«abgHb,mnAn
g!50. ~5!

By definition,Am
a(x) must satisfy the condition

]mAn
a2]n

aAm52«abgAm
bAn

g . ~6!

On the other hand, the Faddeev model@2–4# is defined by
the Lagrangian density

LF5d2~]mn!•~]mn!24d4FmnFmn, ~7!

wheren(x) is a three-component vector satisfying

n25nana51 ~8!

andFmn(x) is given by

Fmn5 1
2 n•~]mn3]nn!. ~9!
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The field equation forn turns out to be@5#

]m~d2n3]mn24d4Fmn]nn!50. ~10!

Both of these models are expected to describe the ef
tive low energy dynamics of QCD. The soliton solutions
the Skyrme model are identified with baryons@1#, while
those of the Faddeev model are regarded as glueballs@2#.
The numerical analysis of the Skyrme model genera
agrees well with the experimental values@6,7#. The further
numerical analysis of the Skyrme and the Faddeev mo
revealed that both models possess knot soliton solut
@8,9#.

As for the analytic solutions, however, only a few simp
examples are known for these models. Skyrme@1# pointed
out that the fieldAm

a(x) of the form

Am
a~x!5km f a~k•x! ~11!

with k25kmkm50 is a solution of Eq.~5! since both]mAa,m

andHmn
a vanish. He also noted that the configuration

g~x!5cosb~x!1 ieata sinb~x! ~12!

with ea (a51,2,3) being real constants satisfyingeaea51
solves the Skyrme model ifb(x) satisfies]m]mb(x)50.

The static configuration

g~x!5cosS j~r !

2 D1
i

r
xata sinS j~r !

2 D ~13!

with r 5A(x1)21(x2)21(x3)2 is a solution of the Skyrme
model if j(r ) satisfies the differential equation@5#

c2S d2j

dr2
1

2

r

dj

dr
2

2 sinj

r 2 D 1c4F12cosj

r 2

d2j

dr2
1

sinj

2r 2 S dj

dr D
2

2
~12cosj!sinj

r 4 G50. ~14!

It seems difficult to obtain thec2 ,c4-dependent analytic so
lutions of this equation for general values ofc2 andc4. Re-
cently, Cho@5# noted that the constant configuration

j~r !5p ~15!
©2002 The American Physical Society19-1
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solves the above equation and constitutes the monopole
lution of the Skyrme model. On the other hand, it can
easily checked that the static configuration@5#

na~x!5
xa

r
~16!

is a solution of the Faddeev model since both]m(n3]mn)
and Fmn vanish except at the originr 50. We here remark
that all the above solutions do not involve the coupling co
stantsc2 andc4 (d2 andd4) in LS(LF). The solutions~11!,
~12!, and ~13! with ~15! @~16!# of the Skyrme~Faddeev!
model solve the equations]mAa,m5]m(«abgHb,mnAn

g)50
(]m(n3]mn)5]m(Fmn]nn)50) which are severer than Eq
~5! @~10!#. They do not describe the correlation between
c22 andc42 (d22 andd42) terms inLS(LF). To see how
the two terms inLS(LF) correlate, we must obtain the solu
tions which depend both onc2 and c4 (d2 and d4). Al-
though, by a suitable choice of the scale of the spacetime
the overall coefficient ofLS(LF), c2, andc4 (d2 andd4) can
be set equal to unity, we proceed with keeping them exp
in LS(LF).

In this paper, we shall obtain a class of exact solutio
involving bothc2 andc4 (d2 andd4) for the Skyrme~Fad-
deev! model. With an appropriate choice of field variable
the field equations of these two models are written in stric
the same form. Although the final form forg(x)(n(x)) con-
tains the ordering operation and is rather symbolic, the fi
Am

a(x) (n3]mn) is given explicitly. The fieldAm
a(x) (n(x)

3]mn(x)) obtained satisfies the condition forg(x)(n(x)) to
exist. We note that many physical quantities, e.g., ene
momentum tensor, can be expressed in terms
Am

a(x) (n(x)3]mn(x)). They are not the soliton solution
but the wave solutions in the Minkowski space. They sup
us with examples of how the superposition of wave solutio
is attained in nonlinear field theories. This paper is organi
as follows. In Sec. II we discuss the relation of the fie
equation of the Faddeev model to that of the Skyrme mo
In Sec. III we solve the Skyrme model and discuss the s
plest solution. In Sec. IV we solve the Faddeev model by
method similar to that of Sec. III. We shall close by a br
summary of our results and an outlook in Sec. V.

II. THE RELATION BETWEEN FADDEEV
AND SKYRME MODELS

If we defineBm
a(x) by

Bm
a~x!5«abgnb~x!]mng~x! ~17!

and writeBm5(Bm
1 ,Bm

2 ,Bm
3 ), we readily obtain the relation

Bm3~Bn3Br!52Fnr]mn, ~18!

whereFmn is defined by Eq.~9!. Then the field equation o
the Faddeev model, Eq.~10!, becomes

]m@d2Bm1d4~Bm3Bn!3Bn#50. ~19!

By definiton,Bm must satisfy the condition
10501
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]mBn2]nBm52Bm3Bn . ~20!

We find that Eqs.~19! and~20! are strictly of the same form
as Eqs.~5! and ~6!. Since the degree of freedom inn(x) is
two while that ing(x) is three, we conclude that the solu
tions of the Faddeev model yield a restricted class of so
tions of the Skyrme model.

III. SOLUTION OF THE SKYRME MODEL

A. Solution

In this section, we seek the solution of Eq.~5! of the
following form:

g~x!5h~j,h!, ~21!

j5k•x, h5 l •x,

wherek and l are constant four-vectors satisfying

k25 l 250, k• l 5” 0. ~22!

It can be regarded as a generalization of Eq.~11!. The field
Am

a(x) defined by Eq.~2! is written as

Am
a~x!5aa~j,h!km1ba~j,h!l m ,

aa5
1

2i
trFtah†~j,h!

]h~j,h!

]j G ,
~23!

ba5
1

2i
trFtah†~j,h!

]h~j,h!

]h G .
In terms of the vectorsa5(a1,a2,a3) and b5(b1,b2,b3),
the field equation~5! and the conditon~6! are expressed as

]

]h
@sa1a3~b3a!#1

]

]j
@sb1b3~a3b!#50, ~24!

]a

]h
2

]b

]j
52~b3a!, ~25!

wheres is defined by

s5
c2

c4~k• l !
. ~26!

If we assume thatb is a constant vector, Eqs.~24! and ~25!
are simplified to

]a

]h
52~b3a!, ~27!

b3H b3
]a

]j
12@~a•b!2s#aJ 50. ~28!

The latter equation is equivalent to
9-2
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b3H ]a

]j
1

2@~a•b!2s#

b2
~a3b!J 50, ~29!

whereb is equal toAb2. From Eq.~29!, we have

]a

]j
5

2@~a•b!2s#

b2
~a3b!1K~j,h!b, ~30!

whereK(j,h) is an arbitrary function ofj andh. Then from
Eqs.~27! and ~30!, we obtain

]

]j S ]a

]h D5
4@~a•b!2s#

b2
@b3~b3a!# ~31!

and

]

]h S ]a

]j D5
4@~a•b!2s#

b2
@b3~b3a!#1

]K~j,h!

]h
b.

~32!

In deriving Eq.~32!, we have made use of the result of E
~27! that a•b is independent ofh. Comparing Eq.~31! with
Eq. ~32!, we find thatK(j,h) is independent ofh if a is a
regular function ofj and h. K(j,h) in Eq. ~30! should be
replaced byK(j):

]a

]j
5

2@~a•b!2s#

b2
~a3b!1K~j!b, ~33!

from which we have

]

]j
~a•b!5K~j!b2. ~34!

If we definen(j) by

n~j!5
~a•b!2s

b2
, ~35!

K(j) is given by

K~j!5
dn~j!

dj
. ~36!

Equations~33!, ~35!, and~36! now yield

]a

]j
52n~j!~a3b!1

dn~j!

dj
b. ~37!

If we definep(j,h) andv(j) by

p~j,h!5a~j,h!2n~j!b, ~38!

dv~j!

dj
5n~j!, ~39!

we are led to the simple equations
10501
]p

]h
5

]p

]v
52~b3p!. ~40!

The general solution of the above equation is given by

p~j,h!5lb1ccos@2b„h1v~j!…#1dsin@2b„h1v~v!…#,
~41!

wherel is a constant andc andd are constant vectors satis
fying

b3c5bd, d3b5bc. ~42!

Comparing the result~41! with Eqs.~35!, ~38!, and~39!, we
finally obtainl5s/b2 and

a~j,h!5F s

b2
1

dv~j!

dj Gb1ccos@2b„h1v~j!…#

1dsin@2b„h1v~j!…# ~43!

with an arbitrary functionv(j). We observe that the nonlin
earity in a of the left-hand side~lhs! of Eq. ~29! has been
absorbed in the definition of the variablev(j): a•b
5b2dv(j)/dj1s. We note that this condition, Eq.~35!, is
automatically satisfied fora given by Eq.~43!. It is easy to
check thata(j,h) given by Eq.~43! indeed solves Eq.~29!.
Thus we have

Am
a~x!5H kmF s

b2
1

dv~j!

dj G1 l mJ ba

1km$ca cos@2b„h1v~j!…#

1da sin@2b„h1v~j!…#%, ~44!

Hmn
a ~x!5~ l mkn2 l nkm!$2ca sin@2b„h1v~j!…#

1da cos@2b„h1v~j!…#%, ~45!

dv~j!

dj
52

s

b2
1

1

l •k
bal mAm

a~x!. ~46!

We see that the coupling constantsc2 and c4 appear in
Am

a(x) throughs and possibly throughv(j) and thatv(j) is
determined by a certain condition imposed onbal mAm

a(x).
We note that, for the above solution, we have the relat

]mAa,m5
2b

~k• l !
kml nHmn

a 52b~k• l !$2ca sin@2b„h1v~j!…#

1da cos@2b„h1v~j!…#%. ~47!

We next obtaing(x)5h(j,h) by assuming

h~j,h!5u~j!v~h!, ~48!

whereu(j) andv(h) belong toSU(2). From Eqs.~2! and
~48!, we have
9-3
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aa5
1

2i
trS tav†u†

du

dj
v D ,

ba5
1

2i
trS tav†

dv
dh D . ~49!

v(h) is now given by

v~h!5eihb•t,

5cos~hb!1 i ~ b̂•t!sin~hb! ~50!

with b̂5b/b. Thenvtav† is calculated to be

vtav†5mabtb,

mab5~dab2b̂ab̂b!cos~2bh!

2«abgb̂g sin~2bh!1b̂ab̂b. ~51!

Comparing the expressions

aa5
mab

2i
trS tbu†

du

dj D ~52!

with the result~43!, we obtain

1

2i
~dab2b̂ab̂b!trS tbu†

du

dj D5ca cos~2bv!1da sin~2bv!,

2
1

2i
«abgb̂g trS tbu†

du

dj D52ca sin~2bv!

1da cos~2bv!,

1

2i
b̂ab̂b trS tbu†

du

dj D5bF s

b2
1

dv~j!

dj G b̂a.

~53!

The solution of these equations is given by

1

2i
trS tbu†

du

dj D5qb~j!, ~54!

whereqa(j) is defined by

qa~j!5baF s

b2
1

dv~j!

dj G1ca cos@2bv~j!#

1da sin@2bv~j!#. ~55!

Now u(j) is obtained as

u~j!5u~0!Pj8 expF i E
0

j

dj8taqa~j8!G , ~56!

wherePj8 denotes the anti-j8 ordering.
10501
B. Discussion

For generalv(j), the right-hand side~rhs! of Eq. ~56!
cannot be integrated explicitly. We can, however, see that
above result implies some nontrivial nonlinear effect cau
by the interplay of thec22 and c42 terms inLS . For ex-
ample, in the simplest case thatv(j) is a constant,qa(a
51,2,3) are constants also and we have

g~x!5ei jq•teihb•t, ~57!

q5b
s

b2
1ccos~2bv!1dsin~2bv!. ~58!

The two vectorsq andb definingg(x) satisfy

q•b5s. ~59!

It is straightfoward to see thatg(x) is a superposition of the
waves described by sin@ j6(x)# and cos@ j6(x)#, where j 1(x)
and j 2(x) are defined by

j 6~x!5F kAS c2

c4
D 2 1

~k• l !2

1

b2
1c26blG •x[k6•x,

~60!

where we have made use of Eq.~26! and c25b2[c2. We
observe that the above type of solutions would never app
in the model defined byLS with c450. It is interesting that
@(k6)2#2 is given by

@~k6!2#25S c2

c4
D 2

1b2c2. ~61!

We next consider the energy-momentum tensor associ
with the solution~56!. Since the energy-momentum tenso

Tmn5
]LS

]Aa,m
An

a2hmnLS ~62!

can be expressed in terms ofAm
a @1#, we are not worried

about the ordering operationP̄j8 in Eq. ~56!. From the results
~44! and ~62!, we have

Tmn516c2@~z2b21c2!kmkn1zb2~kml n1knl m!

1b2l ml n2~k• l !zb2hmn#

12c4~k• l !c2@8b2~kml n1knl m!2~k• l !hmn#,

~63!

z5
s

b2
1

dv~j!

dj
. ~64!

We see thatTmn depend only onj. From the aboveTmn , we
obtain

Tm
m5232c2zb2~k• l !18c4~k• l !2c2~4b221!, ~65!
9-4
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kmTmn516c2b2~k• l !l n12c4~k• l !2c2~8b221!kn ,
~66!

l mTmn516c2~z2b21c2!~k• l !kn

12c4~k• l !2c2~8b221!l n . ~67!

We find thatkmTmn is constant, whilel mTmn depends onj.
In contrast to the above results, in the case of the solu

~11!, we have Tmn516c2kmkn f a(k•x) f a(k•x) and hence
Tm

m5kmTmn50.

IV. SOLUTIONS OF THE FADDEEV MODEL

We next obtain the solution of the Faddeev model.
assume thatna(x) (a51,2,3) are functions of the variable
j5k•x and h5 l •x introduced in the previous section. W
still adopt the assumption~22! for km and l m . Then we have

Fmn5
1

2
~kml n2knl m!Fn•S ]n

]j
3

]n

]j D G . ~68!

The field equation~10! becomes

S km

]

]j
1 l m

]

]h D H d2FkmS n3
]n

]j D1 l mS n3
]n

]h D G22d4

3~kml n2knl m!S kn

]n

]j
1 l n

]n

]h D Fn•S ]n

]j
3

]n

]h D G J
50. ~69!

Guided by the discussion in Sec. II, we definea andb by

a5n3
]n

]j
, ~70!

b5n3
]n

]h
. ~71!

If we take the condition~8! into account, we have

a3b5
]n

]j
3

]n

]h
. ~72!

Then the field equation~69! is written as

]

]h
@ra1a3~b3a!#1

]

]j
@rb1b3~a3b!#50,

~73!

wherer is defined by

r5
d2

2d4~ l •k!
. ~74!

On the other hand, the definitions~70! and ~71! yield

]a

]h
2

]b

]j
52~b3a!. ~75!
10501
n

e

We find that the above equations fora andb are strictly of
the same form as those fora andb in the previous section. If
the solutionsa and b for the Skyrme model are given bya
5F(j,h;s) and b5G(j,h;s), then a5F(j,h;r) and b
5G(j,h;r) solve Eqs.~73! and~75!. If we assume thatb is
a constant vector, we obtain the analogue of Eqs.~27!, ~28!,
and ~35!:

]a

]h
52~b3a!,

]a

]j
52m~j!~b3a!1

dm~j!

dj
b,

m~j!5
~a•b!2r

b2
~76!

with b5Ab2.
We now know that there existsg̃(x)5h̃(j,h)

5 ṽ(j)ũ(h),g̃,h̃,ũ,ṽPSU(2), such that

A[ iaata5g̃†
]g̃

]j
5 ṽ†ũ†

dũ

dj
ṽ, ~77!

B[ ibata5g̃†
]g̃

]h
5 ṽ†

dṽ
dh

. ~78!

They are obtained by replacings in g, h, u, andv of Sec. III
by r. The fieldsna are obtained from Eqs.~70! and ~71! or
equivalently from

]n

]j
5a3n, ~79!

]n

]h
5b3n. ~80!

If we defineN by

N5tana , ~81!

Equations~79! and ~80! become

]N

]j
5

1

2
@N,A#, ~82!

]N

]h
5

1

2
@N,B#. ~83!

n is determined by these conditions in the following way. W
setN as

N5 j †q j , ~84!

wherej belongs toSU(2) andq is a constant matrix belong
ing to su(2). Thecondition ~8! yields
9-5
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q25S 1 0

0 1D ,

while Eqs.~82! and ~83! give

FN, j †
] j

]jG5
1

2
FN,g̃†

]g̃

]j
G , ~85!

FN, j †
] j

]h G5
1

2
FN,g̃†

]g̃

]h
G . ~86!

If we define the analogue ofqa(j) of Sec. III by q̃a(j), that
is,

q̃a~j!5baF r

b2
1

dv~j!

dj G1ga cos@2bv~j!#

1da sin@2bv~j!#, ~87!

b3g5bd, d3b5bg, ~88!

we have

j †
] j

]j
5 ṽ†S i

2
taq̃a~j! D ṽ ~89!

j †
] j

]h
5 ṽ†S i

2
tabaD ṽ5

i

2
taba. ~90!

We then obtain

j ~j,h!5 j ~0,0!PtexpF i E
0

1

dtG~ t !G , ~91!

G~ t !5
1

2
ṽ†@h~ t !#taH q̃a@j~ t !#

dj~ t !

dt

1ba
dh~ t !

dt J ṽ@h~ t !# ~92!

with

j~0!5h~0!50, j~1!5j, h~1!5h. ~93!

As in the case of the Skyrme model, we can calculate so
quantities without being worried by the ordering opera
10501
e
r

P̄t . For example, from Eqs.~68!, ~70!, ~71!, and the discus-
sion below~75!, we have

FmnFmn52
1

2
~k• l !2~a3b!2

52
1

2
~k• l !2~a3b!2us→r

52
1

2
~k• l !2b2c2, ~94!

which is constant. The term]mn•]mn in LF is equal to 2(k
• l )(a•b)52(k• l )(r1b2dv(j)/dj).

V. SUMMARY AND OUTLOOK

We have discussed the intimate relation between the F
deev and the Skyrme models. We have seen that the
equations and the supplementary conditions for these mo
take exactly the same form. Assuming thatg(x) in LS and
n(x) in LF are functions of the variablesj5k•x and h5 l
•x with k25 l 250, we have obtained a class of exact so
tions of the Faddeev and the Skyrme models. In contrast w
the previously obtained solutions of these models, our so
tions depend on two coupling constants which define
models. Our solutions contain an arbitrary functionv(j).

The baryon number current of the Skyrme model is d
fined by @1#

Nl5
1

12p2
«lmnr«abgAm

aAn
bAr

g ~95!

and vanishes under our assumption. Our results, howe
suggest that there would be a wave solution of the Skyr
model which is a function ofj,h, and z5m•x with m2

50. For such a solution, although the baryon numberN
5*d3xN0(x) might be ill-defined, the densityN0(x) itself
would take a well-defined nonvanishing value.
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