PHYSICAL REVIEW D 66, 105019 (2002

Class of exact solutions of the Skyrme and the Faddeev models
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A class of exact solutions of the Skyrme and the Faddeev models is presented. In contrast with previously
found solutions, they are produced by the interplay of the two terms in the Lagrangians of the models. They are
not solitonic but are of wave character. With an appropriate choice of field variables, the field equations of the
two models are written in exactly the same form. The solutions supply us with examples of the superposition

of two plane waves in nonlinear field theories.
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I. INTRODUCTION

The Skyrme mod€]l1] is defined by the Lagrangian den-
sity

Ls=—4c,t(g%9,0)(g"9"9)]

c
+ 5 t(l9'9,9, g'o,91g" g, g'org) (@)

whereg(x) is an element o5U(2) andc, andc, are cou-
pling constants. If we defind? (x) andHj (x) by

1
A= 57 tr( 9'9,9) 2
HZD:&MAS_&VAZ ’ (3)
Lg can be written as
Ls=8C,ALAMH —CHE HOHY, (4)

wherer* (a«=1,2,3) are the Pauli matrices. The field equa-

tion is given by[1]

9,(2CA™#+cae *FYHAHAY) =0. (5
By definition,A;’,{(x) must satisfy the condition
9, NS~ I9A, =2 PYALAY. (6)

On the other hand, the Faddeev mop&t}4] is defined by
the Lagrangian density

PACS nuni®er11.10.Lm, 02.30.1k, 12.39.Dc

The field equation fon turns out to bg5]

d,(danX g#n—4d,F#"9,n)=0. (10
Both of these models are expected to describe the effec-
tive low energy dynamics of QCD. The soliton solutions of
the Skyrme model are identified with baryofis], while
those of the Faddeev model are regarded as glueflls
The numerical analysis of the Skyrme model generally
agrees well with the experimental valugg7]. The further
numerical analysis of the Skyrme and the Faddeev models
revealed that both models possess knot soliton solutions
[8,9].
As for the analytic solutions, however, only a few simple
examples are known for these models. SkyirhEpointed
out that the fieldA;(x) of the form
AL(x) =K, f*(k-x) (11
with k2=kMk“=O is a solution of Eq(5) since bothy ,A*#
andHj, vanish. He also noted that the configuration
g(x)=cosB(x)+ie*r*sinB(x) (12
with e* (a¢=1,2,3) being real constants satisfyiafle“=1
solves the Skyrme model B(x) satisfiesd,d*B(x) =0.
The static configuration

g(x)=co<?

with r=/(x;)%+ (X,)?+ (X3)? is a solution of the Skyrme
model if ¢(r) satisfies the differential equatidb]

+ :—xar‘” sin(?)

(13

Le=dy(d,n)-(9*n)—4d,F, F*", (7)
d2§+ 2d¢é  2sing . 1—cosé d?¢ sing [ dé)?
wheren(x) is a three-component vector satisfying C2 drz | rdr 2 Cs4 12 dr2 orz\dr
2: =
n"=nan.=1 ®) (1—cosé)siné (14
andF,,(x) is given by r4
FLy=32n-(3,nXd,n). (9 It seems difficult to obtain the,,c,-dependent analytic so-
lutions of this equation for general valuesofandc,. Re-
cently, Cho[5] noted that the constant configuration
*Electronic address: hirayama@sci.toyama-u.ac.jp
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solves the above equation and constitutes the monopole so- 4,B,—3d,B,=2B,XB,. (20)
lution of the Skyrme model. On the other hand, it can be
easily checked that the static configurat|&nh We find that Eqs(19) and(20) are strictly of the same form

as Eqgs.(5) and(6). Since the degree of freedom m{x) is

(16) two while that ing(x) is three, we conclude that the solu-
tions of the Faddeev model yield a restricted class of solu-
tions of the Skyrme model.

Xa
I’la(X) = T

is a solution of the Faddeev model since béff{nx d#n)

and F#” vanish except at the orlglr_1=0. We here re_mark Ill. SOLUTION OF THE SKYRME MODEL
that all the above solutions do not involve the coupling con-
stantsc, andc, (d, andd,) in Lg(Lg). The solutiong11), A. Solution

(12), and (13) with (15 [(16)] of the Skyrme(Faddeey In this section, we seek the solution of E@) of the
model solve the equationg,A*#=d,(e“*"HF“"AT)=0  following form:
(d,(nx9*n)=4,(F*"3,n)=0) which are severer than Eq.

(5) [(10)]. They do not describe the correlation between the g(x)=h(¢,7), (21
c,— andc,— (d,— andd,—) terms inLg(Lg). To see how
the two terms inCg(Lg) correlate, we must obtain the solu- E=k-x, n=I-x,

tions which depend both on, and c, (d, and d,). Al-

though, by a suitable choice of the scale of the spacetime antiherek and| are constant four-vectors satisfying

the overall coefficient o£5(Lg), ¢, andc, (d, andd,) can -

be set equal to unity, we proceed with keeping them explicit k*=1°=0, k-1#0. (22

in Lg(Lg). - ,
InS this paper, we shall obtain a class of exact solutionétaca” be regarded as a generalization of &d). The field

involving bothc, andc, (d, andd,) for the Skyrme(Fad- ~ Ax(x) defined by Eq(2) is written as

deevy model. With an appropriate choice of field variables, N N N

the field equations of these two models are written in strictly AL)=a%(& mk,+b (&l ,,

the same form. Although the final form fgi(x)(n(x)) con-

tains the ordering operation and is rather symbolic, the field hi(&, ) (¢, )

A%(x) (nxa,n) is given explicitly. The fieldA7(x) (n(x) ' aE |

Xd,n(x)) obtained satisfies the condition fg¢x) (n(x)) to (23

exist. We note that many physical quantities, e.g., energy-

momentum tensor, can be expressed in terms of b 1 " ah(¢, 7])}

A%(X) (n(X)xd,Nn(x)). They are not the soliton solutions 2i an |

but the wave solutions in the Minkowski space. They supply

us with examples of how the superposition of wave solutiondn terms of the vectora=(a',a?a% and b=(b*b? b,

is attained in nonlinear field theories. This paper is organizedhe field equatior(5) and the conditori6) are expressed as

as follows. In Sec. Il we discuss the relation of the field

equation of the Faddeev model to that of the Skyrme model.

In Sec. Il we solve the Skyrme model and discuss the sim-

plest solution. In Sec. IV we solve the Faddeev model by the

a—2i r

*h'(€,7)

J J
3—77[0'61-!- axX(bxa)]+ &—g[ab+ bX(axb)]=0, (24

method similar to that of Sec. Ill. We shall close by a brief Jda db
summary of our results and an outlook in Sec. V. an a—§=2(b>< a), (25)
Il. THE RELATION BETWEEN FADDEEV whereo is defined by
AND SKYRME MODELS
) c
If we defineB%(x) b -2
u(X) by o= kD) (26)
BL(x)= s”‘ﬁynﬁ(x)&uny(x) 17

If we assume thab is a constant vector, Eq&24) and (25)
and writeB,,= (B, ,BZ ,B3), we readily obtain the relation are simplified to

[T ag"
B,X(B,XB,=2F,d,n, 18 Ja
X BBy =2 s 1o ——=2(bxa), (27
whereF ,, is defined by Eq(9). Then the field equation of 7
the Faddeev model, E@10), becomes P
XibX—+ -b)— =0.
3,[d;B*+dy(B*XB*) X B,]=0. (19) bx| bx gz +2l(ab)~ala =0 8
By definiton,B,, must satisfy the condition The latter equation is equivalent to
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da 2[(a-b)—a]
+—

bx E 0 (axXb); =0, (29
whereb is equal to\b%. From Eq.(29), we have
da 2[(a-b)—a]
= ———F——(aXh)+K(& )b, (30

9 p2

wherekC(&, ) is an arbitrary function of and#. Then from
Egs.(27) and(30), we obtain

d [ da _4[(a-b)—a]
i)~ [bX (bXa)] (31
and
d [da\ 4[(a-b)—o] IK(&,m)
p b :T[bx(bxa)]+ P b.
(32)

PHYSICAL REVIEW B6, 105019 (2002

Jp _ Jp
%—£—Z(b><p)

(40
The general solution of the above equation is given by

p(&,1m)=N\b+ccod 2b(n+ w(£))]+dsin2b(n+ w(w)()j,l)

where\ is a constant and andd are constant vectors satis-

fying

bxc=bd, dXb=bc. (42
Comparing the resul41) with Eqgs.(35), (38), and(39), we

finally obtain\ = o/b? and

o do(d)
p2 | de

+dsin2b(n+ w(£))]

a(§,m)= b+ccog 2b(n+ w(£))]

(43)

with an arbitrary functiorw(¢). We observe that the nonlin-

In deriving Eq.(32), we have made use of the result of Eq. earity in a of the left-hand sidelhs) of Eq. (29) has been

(27) thata- b is independent ofy. Comparing Eq(31) with
Eq. (32), we find thatK(&, ») is independent of; if ais a
regular function of¢é and 5. K(&,7) in Eq. (30) should be
replaced byK(¢):

Ja 2[(a-b)—a]

9E o2 (axb)+(&)b, (33
from which we have
1%
a—g(a' b)=K(¢)b?. (39
If we definev(§) by
(a-b)—o
v(§)= T (35
(&) is given by
K(&)= dg—f) (36)
Equations(33), (35), and(36) now yield
% o eyaxh)+ 37)
9 dé
If we definep(¢,7) andw(&) by
p(&,m)=al&, n)—v(é)b, (38)
e, (39

we are led to the simple equations

absorbed in the definition of the variable(¢): a-b
=b2dw(&)/dé+ 0. We note that this condition, Eg35), is
automatically satisfied foa given by Eq.(43). It is easy to
check thata(¢,7) given by Eq.(43) indeed solves E¢29).
Thus we have

AZ(X)z[k# %+d°;—§) +|M]ba
K, {c” cog 2b(n+ w(£)]
+d*sin 2b(n+ w(£))]}, (44)
HL, ()= (1K, =1Lk ){—c*siN2b(n+ w(£))]
+d“cog 2b(n+ w ()]}, (45
dw(¢) o 1 .
d—fz_E_‘_mb |MA#(X) (46)

We see that the coupling constamis and c, appear in
A’(x) througho and possibly throug(¢) and thatw(§) is
determined by a certain condition imposed wh“A7(X).

We note that, for the above solution, we have the relation

2D "He,=2b(k-1){— c®sin 2b(7+ w(£))]

A=
+d*cog 2b(n+ w(§)]}- (47)
We next obtaing(x) =h(¢&, ») by assuming
h(& n)=u(&v(n), (48)

whereu(¢) anduv(7) belong toSU(2). From Egs.(2) and
(48), we have
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a%= % tr( T“UTUT3—20>,
b*= i tr( T“de—v) . (49
2i dgy
v(7) is now given by
v(p) =€,
=cog 7b)+i(b- P sin(7b) (50)
with b=b/b. Thenv %" is calculated to be
v T =mh:B,
m*f=(5*¥—b*bP)cog 2bz)
— &*PYp7 sin(2b ) + b*b~. (52)
Comparing the expressions
a%= n;‘)i‘ﬁ tr( TBUT(;—;> (52
with the result(43), we obtain
1 n du )
E(éaﬁ—b“bﬁ)tr( Tﬁqu—g =c”coq2bw)+d*sin(2bw),
- %s“’”ﬁytr r%*j—?) = —c*sin(2bw)
+d*cog2bw),
Sooba et S =l % 208 e
(53
The solution of these equations is given by
% tr( T’BUT:;I_;) =qP(é), (54)
whereq®(€) is defined by
o dw(f)
q“(§)=b" E+ TdE +ccog2bw(§)]
+d*sif2bw(§)]. (55
Now u(¢) is obtained as
u(é)=u(0)Py exp[i fjdf'r“qa(gw}, (56)

whereP,, denotes the ang’ ordering.

PHYSICAL REVIEW D 66, 105019 (2002

B. Discussion

For generalw(¢), the right-hand siddrhs) of Eq. (56)
cannot be integrated explicitly. We can, however, see that the
above result implies some nontrivial nonlinear effect caused
by the interplay of thec,— andc,— terms inLg. For ex-
ample, in the simplest case thal(¢) is a constantq®(«
=1,2,3) are constants also and we have

g(x)= ei £q- rei nb- T (57)

q:bé-i-ccos(wa)-i-dsin(wa). (58)

The two vectorsy andb definingg(x) satisfy
g-b=o. (59
It is straightfoward to see thaf(x) is a superposition of the

waves described by gin.(X)] and cofj.(x)], wherej ,(x)
andj _(x) are defined by

|2 1 1
k = — +c?+bl|-x=k. - X,
Csa/ (k-1)?b?

(60)

j=(X)=

where we have made use of E@6) and c?=b’=c2. We
observe that the above type of solutions would never appear
in the model defined by s with c,=0. It is interesting that
[(k+)?]? is given by

2
+Db2c2. (61)

[(k+)2]2—(c—4

We next consider the energy-momentum tensor associated
with the solution(56). Since the energy-momentum tensor

L
T %%

uv &Aa,/»l«Ag_ 7],(LV’CS (62)

can be expressed in terms Af, [1], we are not worried

about the ordering operatid®. in Eq. (56). From the results
(44) and(62), we have

T,.,=16¢,[ (22b%+ DK K, + 2b2(K,| , T K,1 )
+b2 1, (k-1)227,,]
+2¢4(k-1)c[802(K, |, + K, ) — (K1) 7,,,],
(63

o dw(§)
z= E—’— W (64)

We see thal ,, depend only org. From the above ,,,, we
obtain

Th=—32c,zb*(k-1)+8cy(k-1)°c*(4b*~1), (65
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kHT = 16c,0%(k- 1)1, +2¢,(k-1)%c*(8b?— 1)k,
(66)
14T ,, = 16C,(2%b%+c?) (k- )k,
+2c4(k-1)2c?(8b%—=1)1,. (67)

We find thatk“T ,, is constant, whilé“T ,, depends or%.

In contrast to the above results, in the case of the solution

(11), we haveT,,=16c,k, Kk, f*(k-x)f“(k-x) and hence
Th=k"T,,=0.

IV. SOLUTIONS OF THE FADDEEV MODEL

PHYSICAL REVIEW B6, 105019 (2002

We find that the above equations farand B are strictly of
the same form as those farandb in the previous section. If
the solutionsa and b for the Skyrme model are given lgy
=F(§,m;,0) and b=G(¢&,7;0), then a=F(¢,7;p) and B
=G(¢, n;p) solve Eqs(73) and(75). If we assume thgB is
a constant vector, we obtain the analogue of Egg), (28),
and(35):

We next obtain the solution of the Faddeev model. We

assume thanh,(x) (a=1,2,3) are functions of the variables
é=k-x and »=1I-x introduced in the previous section. We
still adopt the assumptiof22) for k,, andl,. Then we have

F 1 k,l,—k,l AL
,U,V_E( ulv ™ Ry ,u,) n- é,_gxa_ . (68)
The field equatior(10) becomes
k2 W kel nx 22 w1 nx 2 = 24
g map) | 9\ " 0E "“an ‘
kel — k1 | an | an Jn  odn
X( — ) v§_§+ v% n- EX%

=0. (69
Guided by the discussion in Sec. II, we defieeand 8 by

an

aZHXQ, (70
= on 71
ﬁ—nxﬂ (72)
If we take the condition(8) into account, we have
X B= anx n 72
X f= X (72

Then the field equatiof69) is written as

J J
GplPatax(BXxalt ZelpBt X (ax B)]=0,

(73
wherep is defined by
__ 74
P a0 "
On the other hand, the definitioig0) and(71) yield
oa aﬂ—z 75
PP T (BX a). (79

&a_

= 2Bxa,

d du(€)

ouepx e+ B
(6= (“'g# (76)

with B= B2
We now know that there existsg(x)=h(&,7)
=5(&)U(7),9,h,U,0 e SU(2), such that

09 e dle
Az|a“7“=gT§—§—vTqu—§v, (77
g ~.d
B:I,BaTa_gTiszd—i; (78)

They are obtained by replacingin g, h, u, andv of Sec. IlI
by p. The fieldsn, are obtained from Eg$70) and(71) or
equivalently from

c?n_ X 79
(?_f_a ny ( )
an
—=BXn (80
J
If we defineN by
N=7n,, (81
Equations(79) and (80) become
i = ! N,A 82
[9_5_ E[ ’ ]1 ( )
N_1 N,B 83
I 5[ ,B] (83

n is determined by these conditions in the following way. We
setN as
N=jaj, (84)

wherej belongs toSU(2) andq is a constant matrix belong-
ing to su(2). Thecondition(8) yields
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1 0 Et For example, from Eq€68), (70), (71), and the discus-
q o 1l sion below(75), we have
1
while Egs.(82) and(83) give FuF=— E(k'|)2(a>< p)?
N aj} 1[ L9 @5 .
1152~ 3| N9 7). =~ (kD axby?,_,
Laji] 1 ~.d9
N,jT—|=Z|N,g"— 86 1
Ham 2{ "z % - 5 (k-1)?p%?, (94)

If we define the analogue of Sec. lll byq®(&), that
gue of*(&) yar() which is constant. The term,n-d*n in L is equal to 2k

is,
(@ B=2(k-1)(p+ Bdw(#)/de).
~ P dw(&) N
q“(§)=p" ’82 dg |77 cog2Bw(§)] V. SUMMARY AND OUTLOOK
oo We have discussed the intimate relation between the Fad-
+otsin2pw(8)], (&7) deev and the Skyrme models. We have seen that the field
BXy=pB6, 6XB=pLYy. (88) equations and the supplementary conditions for these models

take exactly the same form. Assuming thigi) in £5 and
we have n(x) in Lg are functions of the variableg&=k-x and =1
-x with k?=1?=0, we have obtained a class of exact solu-
0]~ e |~ tions of the Faddeev and the Skyrme models. In contrast with
Ve v|ama (&) v B9 the previously obtained solutions of these models, our solu-
tions depend on two coupling constants which define the

+ 9] =4 N PO T, models. Our solutions contain an arbitrary functio(¢).
i’ an 127 B |Jv=5TB" (90) The baryon number current of the Skyrme model is de-
fined by[1]
We then obtain
1
: - T N*= gMHPg BYACAPAY 95)
J(§,n)=J(0,0)Ptexp[lfodtf(t)}, (91 1272 e (

and vanishes under our assumption. Our results, however,
suggest that there would be a wave solution of the Skyrme
model which is a function of, 7, and /=m-x with m?
dn(t)) .~ =0. For such a solution, although the baryon numbler
]v[n(t)] (92 = [d®xNy(x) might be ill-defined, the densitiy(x) itself
dt would take a well-defined nonvanishing value.

1
F(t)=sv 7] [ “TEO—5r g( :

+B°

with
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